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Abstract—We present a flexible, easy-to-expand digital signal 
processing method for detecting heart rate (HR) for cardiac vibra- 
tion signals of fiber Bragg grating (FBG) sensor. The FBG-based 
method of measuring HR is possible to use during the magnetic 
resonance imaging procedure, which is its unique advantage. Our 
goal was to design a detection method with plurality of parameters 
and to subject these parameters to genetic algorithm optimization 
technique. In effect, we arrived at a method that is well able to deal 
with much distorted signals with low SNR. We proved that the 
method we developed allows automatic adjustment to the shape of 
the waves of signal carrying useful information about the moments 
of heartbeat. Thus, we can easily adapt our technique to the analysis 
of signals, which contains information on HR, from sensors employ- 
ing different techniques of strain detection. The proposed method 
has the capabilities of analyzing signals in semi-real-time (online) 
with beat-to-beat resolution, significantly low delay, and negligible 
computational power requirements. We verified our method on 
recordings in a group of seven subjects. Verification included over 
6000 heartbeats (82 min 47 s of recordings). The root-mean-square 
error of our method does not exceed 6.0 bpm. 

Index Terms—Ballistocardiographic (BCG) signal, fiber Bragg 
gratings (FBGs), genetic algorithms (GAs), heart rate (HR), 
parallel computing. 

 

I. INTRODUCTION 

EART rate (HR) is one of the fundamental physiological 

parameters, essential for the monitoring and diagnosis of 

patients. Some conditions, for example, a magnetic resonance 

imaging (MRI) environment, limit the use of conventional HR 

monitors due to their vulnerability to strong electromagnetic 

fields and the possibility of introducing interferences to the 

imaging [1]. However, the latest study [2] shows that HR trends 

may be crucial in predicting symptoms associated with claus- 

trophobia, which often occurs in patients examined with the use 

of equipment limiting their movements such as MRI scanners 

[3]–[5]. In general, HR indicators are of considerably higher 

values in persons experiencing claustrophobic episodes, e.g., 

anxiety, panic, and hyperventilation, in comparison with those 

who do not experience such discomforts. Usually, already be- 

fore a claustrophobic patient is placed inside the MRI tube, 

his/her HR values begin to rise and can reach dangerous levels 

during the examination. Therefore, continuous, online moni- 

toring of trend changes in the patient’s HR shortly before and 

during examination can be crucial in predicting and assessing 

the possible occurrence of claustrophobia closely related to the 

circumstances of examination. 

There are many other patient categories that require HR mon- 

itoring during MRI procedures, e.g., pediatric patients, disabled 

patients, sedated or anesthetized patients, critically-ill or high- 

risk patients, patients developing reactions to contrast media, 

as well as all patients who are unable or may not be able to 

communicate or to use the alarm button [6]. Contrary to the 

electronic transducers, fiber-optic sensors are immune to elec- 

tromagnetic fields used in MRI, safe for the patient, and do 

not influence the imaging quality [7]–[10]. These advantages, 

together with the ability of the fiber-optic sensors to detect 

miniature deflections (e.g., those caused by heart-induced body 

movements), renewed the interest in recording ballistocardio- 

graphic (BCG) signal, [11], particularly in the context of patient 

monitoring during MRI examination [12]. 

Ballistocardiography has obvious advantages such as nonin- 

vasiveness, electrically contactless, as well as simple design of 

measurement systems. However, BCG signal analysis induces 

many problems. The main reason for this is the presence of 

motion artifacts in the measured signals. These artifacts are 

associated with the patient’s body movements, as well as arti- 

facts originating from the environment in applications such as 

examination of vehicle operators. The number of articles cur- 

rently published considering the problem of BCG signal analysis 

[13]–[16] reveals the topicality and novelty of the subject. 

II. MEASUREMENT METHOD 

The movements of the patient’s body including the mechan- 

ical activity of the heart are the causes of force, pressure, and 

strain exerted on the sensing element. There are a number of 

fiber-optic strain gauges designed to monitor vital signs, of 

which the most popular are interferometers [17], micro- [10]– 

[11] and macrobending sensors [18], and fiber Bragg gratings 

(FBGs) [18], [19]. Many researchers took a liking to the FBGs 

due to their spectral encoding, easy multiplexing, and self- 

referencing capabilities [20]. The authors have used the in-house 

constructed FBG-based sensor to acquire BCG signal from an 

MRI patient’s body [19]. Fig. 1(a) shows a photograph of the 

sensor; an elastic Plexiglas board with bonded FBG element is 

placed on the MRI couch behind the back of the patient close 
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frequency that depends on the grating period Λ [9] modulated 

by strains transmitted by the board to the FBG [9]. The value of 

the resonant frequency is measured by an interrogation system. 

We used an sm130-700 instrument manufactured by Micron 

Optics [22]; this is an optical scanner of frequency with a func- 

tion of automatic seeking resonant frequency of the grating. A 

band of 1510–1590 nm was scanned 1000 times per second with 

the peak-to-peak resolution of 1 pm. The instantaneous spectral 

value of the resonant frequency of the FBG-based sensor can be 

calibrated in terms of heartbeat readings. Due to the so-called 

self-reference capability of FBGs, i.e., a return to the referential 

values of spectral parameters after achieving the initial condi- 

tions [23], the sensor does not require additional calibration. 

The mechanical activity of the heart modulates the resonant 

frequency, but the cardiac activity is only one of the several 

sources of strains exerted on the FBG, such as respiration, any 

other body movements, or displacement of the track table during 

the MRI scanning process [7]. Therefore, we have developed a 

method to extract the heart-induced artifacts in the sensor signal 

as well as to provide moments of their occurrence. This allows 

determining a series of heartbeat time intervals (i.e., tachogram) 

and consequently, monitor the HR trace. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Photograph of (a) fiber-optic vital signs sensor and (b) sensor in the 
MRI system. 

 

 
to the heart as shown in Fig. 1(b). The Plexiglas board is of 

209 cm
2
 in area and as thin as 1.5 mm and can follow the con- 

tour of the body fragment when the patient lies on it. At the time, 

the FBG element is subjected to be strained due to body move- 

ments including those induced by heartbeats. Thus, the board 

is a medium reflecting body movements and converting them 

into strains (elongations/contractions) measurable by the FBG. 

A thin layer of epoxy adhesive is applied over the entire length 

of the grating. This protects the bare fiber against moisture and 

enables for transmitting strains to the FBG. 

It has been demonstrated that the level of heart-induced strains 

is much less than the physical strength of the sensor [7], i.e., 

8000 με [8]. Other body movements, e.g., sudden sneezes or 

coughs [9], as well as jerks of the MRI track table [19] do not 

pose a threat to the sensor, as the Plexiglas board is protected 

against large deformations by the hardness of the MRI couch, 

on which only a thin layer ( 1 cm) of soft polyurethane foam 

is put to ensure comfort for the patient and allow the board to 

bend. 

A Bragg grating can be considered as a frequency filter [21]. 

Depending on the measuring system, maximum or minimum 

attenuation of this filter occurs for signals with the resonant 

III. DETECTION METHOD 

The proposed technique uses signals from the sensor, in which 

the measurand is represented by means of wavelength readings 

rather than frequency readings. The wavelength domain is the 

most common way of analyzing the response of an FBG sub- 

jected to strain [12]. Thus, the Bragg wavelength value outlines 

the BCG signal shape as shown in Fig. 2. The peak of ventricu- 

lar ejection phase exerts the greatest strain on the sensor, which 

appears in the ballistocardiogram as a series of the J wave peaks 

[24], [25], indicated by arrows in Fig. 2. The relatively high 

value of noise with respect to the values of the signal presented 

in Fig. 2 is the result of the resolution of the interrogator system 

which is 1 pm while usable peak-to-peak values of the signal 

are about 6 pm. 

 
A. Detection Function 

For detecting heartbeat positions, a specially prepared signal 

of the detection function is analyzed rather than the source signal 

from the sensor. The detection function enhances the signal 

characteristics associated with the heartbeats. The trace of the 

detection function is determined by software implementing a 

cascade of digital filters. Band-pass filter, quadratic function, 

and low-pass filter in this sequence are used [26], [27]. 

By using the aforementioned procedure, the algorithm avoids 

errors introduced by the impulse noise and fluctuations in the 

level of the signals originating from the stopband of filters. This 

approach also allows adjusting the characteristics of the filters 

to the shape of the signal characteristic waves corresponding 

to the heartbeats and thus, to the spectrum of the analyzed sig- 

nal. Therefore, the same algorithm can be adapted for analyzing 

amplitude-modulated BCG signals originating from sensors em- 

ploying different measurement methods (e.g., electromechani- 

cal films or piezoelectric transducers) [28]. The parameters of 
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Fig. 3. Examples of markers set at the found maxima. 

 
 

 

 

 
 

 
 

 

 

Fig. 2. Example of the input signal for the detection method. 

 
 

the utilized filters are part of a set of values being subjected to 

the optimization process. 

 
B. Detecting Local Maxima 

The next step of operation of the detection algorithm is to 

determine the time of occurrence of the local extremes in the 

signal, which may potentially be used as the characteristic mo- 

ments sourced by the heart. A given value of the signal is clas- 

sified by the algorithm as a potential distinctive moment if it 

is the maximum value of the signal for the time interval whose 

center falls at the time of this value. The width of this interval 

is one of the parameters of the algorithm being part of the set of 

values subjected to the optimization. Fig. 3 shows a portion of 

the detection function signal with examples of markers set at the 

positions of the found maxima (yellow) and markers of max- 

ima classified as characteristic moments (green). The frames 

indicate widths of the maxima search windows. 

For each subsequent sample of the signal, it is verified whether 

it occurs in the characteristic time. This verification is based on 

the analysis of samples in two windows of the same size: 1) a 

window preceding the analyzed sample; and 2) a window that 

follows after the sample. We assume that the searched sample 

is an extreme if the maximum values for both windows fall on 

the mutual point. 

 
C. Correcting Local Maxima Series 

In the later stage of the method, algorithms improving the 

sequence of the potential characteristic moments are applied. 

These algorithms, hereinafter referred to as the correctors, are 

interchangeable and customizable elements of the processing. 

A number of correctors have been developed. In the field of 

software engineering, these correctors have been implemented 

as a system of decorator classes [29]. Each corrector receives 

the incoming stream of maxima, processes them, and sends the 

output of the processed extremes stream. This processing may 

involve both generation and filtering of the maxima. The pro- 

posed method is capable of analyzing the signal online. The 

design comprises a chain of correctors; each of them that inde- 

pendently processes the stream of items is determined by the 

requirement of the method’s ability to act as a semi-real-time 

digital signal processing element. The presented approach em- 

ploys the following correctors: 

1) classifying corrector, 

2) averaging corrector, and 

3) corrector of gaps. 

1) Classifying Corrector: The corrector accumulates the in- 

coming stream of times of local maxima from the time range 

with a specified width. This width belongs to the parameters that 

are the subject of optimization. Then, a set of values identifying 

a potential imperfection of the maxima for each of the col- 

lected extremes is assigned. Subsequently, these characteristics 

are multiplied by a set of weights selected in the optimization 

process, and summed. The classifier selects the maximum with 

the lowest cumulative imperfection and forwards it for further 

processing. 

Designation of many of these features depends on the value 

of the JJ interval. This value is defined as the interval between 

the analyzed center of the wave, tn , and the former one, tn−1 

classified as artifact derived from the heartbeat, i.e., ventricular 

ejection, given by 

JJn  = tn  − tn−1 . (1) 

The following features of the incoming maxima are deter- 

mined by the classifying corrector. 

1) The ratio of the local maximum value to the average of N 

previously selected local maxima values, where N is the 

parameter subjected to optimization. 
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2) The ratio of the JJ interval of the current maximum to the 

average JJ interval between M selected earlier extremes, 

where M is the parameter subjected to optimization. 

3) The current JJ interval, used to prevent unnecessary skip- 

ping of the maxima, although the share of such behavior 

through a system of weights is selected by optimization. 

4) The current interval length exceeding beyond the ac- 

ceptable range. We assumed the value of 0.25 s (HR = 

240 bpm) as the minimum of the interval and the value of 

2 s  (HR = 30 bpm) as the maximum of the interval. This 

range is intentionally wider than what is generally used in 

the physiology. 

5) Deviation of values of consecutive intervals, ΔJJn = 
JJn JJn−1 , beyond the acceptable range (ΔJJmax = 

30bpm). 

6) The value of relative change of consecutive intervals, 

δJJn , given by 

is calculated. The algorithm looks for a layout of maxima, which 

corresponds to the smallest variability of the HR signal. 

The procedure of finding a set of extremes filling a gap with 

a given number of positions in the first step divides the gap 

into subranges of equal length. Then, in the array of previously 

found maxima, the positions nearest to the edges of subranges 

are searched. In the following steps, each maximum in the set 

is replaced by the maximum nearest to the averaged time of its 

closest neighbor maxima. This operation is repeated multiple 

times until the system of chosen maxima ceases to change. 

 
D. Optimization 

For optimizing the parameters of the detection method, the 

genetic algorithm (GA) has been implemented. In the imple- 

mentation of this method, a .Net platform and C# programming 

language have been applied. The reason was the possibility of 

using the computing power of the grid of multicore computers. 

δJJn  = 
 |JJn − JJn−1 | 

. (2)
 

JJn 

Along with version 4 of the .Net platform, parallel comput- 

ing library Microsoft Parallel Extensions (PFX) was introduced 

2) Averaging Corrector: This corrector involves replacing 

the position of maximum tn with the center of positions of its 

neighbors according to 

t   = 
tn+ 1  − tn−1 

. (3)
 

2 

From the stream of incoming maxima, these are modified, 

for which the value of relative change of consecutive intervals, 

δJJn , determined according to (2), exceeds the limit parameter. 

This parameter is also included in the set of values subjected to 

optimization. 

3) Corrector of Gaps: The purpose of the next corrector is to 

fill the gaps appearing in the detected maxima stream. Similar 

to the averaging corrector, the logic of the corrector of gaps is 

sensitive to relative change of consecutive intervals, δJJn , de- 

termined according to (2), exceeding the limit parameter, which 

is also a part of the set of values subjected to optimization. The 

second value, which is observed by the corrector, is the HR and 

the fact that its value exceeds the acceptable range (similar to 

the classification corrector). Exceeding the limit values in the 

incoming stream of maxima is regarded as the beginning of the 

gap. The return of parameters to the acceptable ranges means 

the end of the gap. 

The given time of a detected gap is analyzed to detect a  

new set of heartbeat positions. The first task of the algorithm 

detecting position of gaps is to search local maxima with a 

narrow window, i.e., 0.1 s. Narrow windows generate large sets 

of maxima. This logic comes down to analysis of an array of 

detected local maxima to find a new set of characteristic wave 

centers that will fill the given gap. The number of positions to 

insert is the input variable of a procedure, which aims to find 

the potential set of new maxima dividing a gap. 

In subsequent stage, the number of positions for inserting is 

increased by 1 from 1 until it reaches the value equal to the total 

number of available extremes. For each number of the positions 

to insert, the set of maxima dividing gap is determined, and then 

the variability of the HR signal corresponding to a given layout 

[30]. This is a managed library of parallelization of tasks. Its 

basic elements are Parallel LINQ (PLINQ) and Task Parallel Li- 

brary (TPL). PLINQ supports data parallelism wherein the set 

of tasks is executed simultaneously on the different subranges of 

data. The method of implementation is based on the technique of 

integrated query language, LINQ. TPL supports task parallelism 

and provides parallelized versions of the Foreach and For loops. 

The library supports the user in tasks such as management of 

threads of operating system used to perform calculations. 

The idea of GAs has been derived from the theory of evo- 

lution. The techniques inspired by natural phenomena are, in 

particular, mutation, inheritance, selection, and crossing. In a 

GA, the population (i.e., a set of solutions) stored as a sequence 

of genes (genome), evolves toward better solutions pointed by 

the fitness function [31]. 

In the presented approach, the objective of the optimization 

is finding an optimal set of parameters of heartbeat detection 

method, which analyzes signals coming from the FBG-based 

sensor. The set of these variables creates a virtual genome. The 

most common way to represent variables in the genome is binary 

encoding. It is a natural coding method for integer parameters. 

For values that have the nature of real numbers, quantization 

or bit representations of floating point numbers can be applied. 

In the presented optimization problem, some variables are in- 

tegers, and some are real numbers. Due to the predominance 

of the parameters stored as real numbers, direct floating point 

representation of parameters has been applied. This means that 

the described variation of the evolutionary algorithm represents 

real-valued GA [32]. 

During the search for the optimal solution with the use of 

evolutionary algorithms for each individual genome of popula- 

tion, fitness function is computed for determining the prob- 

ability of reproduction. The choice of individuals who will 

participate in the reproduction is the selection process. There 

are several known selection schemes. In the presented imple- 

mentation, stochastic remainder selection without replacement 

has been applied [33]. Assuming that the expected number of 
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TABLE I 
RESULTS OF EVALUATION  OF THE PROPOSED METHOD 

 

Subject no. 1 2 3 4 5 6 7 8 Total 

Rec. time (min:s) 9:34 10:52 10:48 10:26 10:42 10:43 9:49 9:54 82:47 

Beats count 783 748 793 645 776 675 587 1087 6094 

Mean HR (bpm) 82.3 69.0 73.4 62.3 72.6 63.2 59.8 110.0 76.8 

SD (bpm) 6.6 4.7 4.3 6.6 4.7 5.3 3.6 6.7 17.7 

RMSE (bpm) 6.7 4.8 3.2 4.8 2.9 5.9 3.9 9.7 6.0 

RMS of relative error (%) 8.2 6.7 8.1 7.6 4.1 9.9 6.2 7.1 7.4 

Mean error; bias (bpm) –1.4 –0.5 –0.3 0.1 –0.3 –0.8 –0.4 –0.9 –0.6 

 
 

TABLE II  
PARAMETERS SUBJECTED TO OPTIMIZATION AND THEIR OPTIMAL VALUES 

Parameter Optimal value 

Low cutoff frequency of band bass filter 4.72491 Hz 

High cutoff frequency of band bass filter 29.51572 Hz 

Cutoff frequency of low-pass bass filter 6.93891 Hz 

Half-width of the window of local maxima detection algorithm 0.185 s 

Width of interval of which the classifying corrector selects local maxima for comparison 4.8 s 

Number of values of maxima, N, averaged for estimation a feature (a) of maximum determined by classifying corrector 19 

Number of intervals, M, averaged for estimation a feature (b) of maximum determined by classifying corrector 13 

Weight for component (a) criterion for classifying corrector 4.42746 

Weight for component (b) criterion for classifying corrector 4.68384 

Weight for component (c) criterion for classifying corrector 0.83594 

Weight for component (d) criterion for classifying corrector 0.37800 

Weight for component (e) criterion for classifying corrector 7.41111 

Weight for component (f) criterion for classifying corrector 9.21850 

Limit value of relative change of consecutive intervals, δJJn , of averaging corrector 0.1515 

Limit value of relative change of consecutive intervals, δJJn , of corrector of gaps 1.0687 

 

copies of each solution, ei, is given by 

  fi  

Another important mechanism of GA is mutation. Mutation 

is one of the ways to maintain genetic diversity of a population, 

ei = 
1  

ΣP f 
(4) which enables one to avoid premature convergence of the algo- 

 

where fi is the value of fitness of ith genome, and P is the 

number of genomes in population. In this selection scheme, 

each individual is copied as many times as is the integer part of 

ei. The fractional part of ei is the probability of selection of an 

individual one more time. 

The creation of the descendants of individuals of the popu- 

lation relies on crossing their genomes. Special variants of the 

arithmetic crossing operation are proposed for the GA [31], 

wherein the genes of the descendants, z1 , and, z2 , are the sum 

of ancestral genes x and y according to 

z1  =  x(1 − α)+ y(α) (5) 

z2  =  x(α)+ y(1 − α) (6) 

where α:0 ≤ α ≤ 1. 

However, the performed tests have shown that discrete cross- 

ing operation (i.e., α = 1 or α = 0) with one crossing point is 

best suited for the applied configuration of GA. 

Given two parents x1 , x2 , . . . ,  xn and y1 , y2 , . . . ,  yn , 

split point position, k, is picked stochastically. Then, the first 

of the descendants will take the form (7), and the other one will 

take the form (8) 

{x1 , x2 , . . . ,  xk−1 , yk , . . . ,  yn } (7) 

{y1 , y2 , . . . ,  yk−1 , xk , . . . ,  xn } . (8) 

into the population. It is carried out with a certain probability, 

which is a very important GA parameter. We used mutation op- 

erator based on a standard normal distribution and we applied a 

probability of mutation equal to 0.05. 

In the presented GA application, scaling of the fitness function 

was also applied. We used linear scaling and sigma truncation. 

Linear scaling prevents premature convergence of a population 

to one of the local maxima, which can result in overlooking 

the global maximum. The idea of scaling is based on a linear 

transformation of fitness given by 

 

f
J
 = af + b (9) 

 

where a and b are the values selected so as the fitness of the 

best individuals is scaled into the mean fitness of population 

multiplied by an empirically chosen factor. At the same time, 

the fitness value of average individuals remains unchanged. In 

typical applications, the multiplication factor is a number of the 

range 1.2 to 2; we assumed the value of 2. 

To avoid problems with negative values of fitness function, 

linear scaling was preceded by sigma truncation scaling, in 

which the primary value of fitness function is moved toward 

lower values according to 

f
J
 = f − f̄  + cζ (10) 

rithm. Mutation involves the introduction of random gene values j 
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Ie = 
0    

|HR(t) − HRref (t)| dt (11) 

where c is a number of the range 1–3, f̄  is the average value of 

fitness of population, and ζ is the standard deviation of fitness 

of population; we assumed c to be equal to 2. 

An important aspect of the optimization using GAs is also the 

fitness function. Often, this function cannot directly constitute 

one of the indicators describing the objective of optimization. 

The fitness has limitations such as nonnegativity and growth 

toward better solutions. 

After a series of tests, we have developed the following proce- 

dure of determining the base coefficient of fitness function, Ie . 

Both irregularly sampled HR signals, that is, one subjected to 

analysis and the reference signal, are interpolated; the integral of 

absolute difference of these signals is determined according to 

∫ T 

where T is the duration of the signal. 

In practice, a numerical approximation of the previous inte- 

gral is computed. For this purpose, both the interpolated signals 

are equally sampled at a frequency of 10 Hz. Finally, the value 

of fitness function is determined as follows: 

f  = max 

.

0, 1 − 
 ln (1 + Ie )  

Σ 

(12) 

 

 

 

 
Fig. 4. Example of the HR traces obtained in subjects #5 and #8 using the 

ln (1 + CT ) 

where C is a constant equal to 60 bpm. 

Due to the use of filtration as an element of the detection 

method and subjecting the filter parameters to the optimization 

process, it is necessary to design the digital filter in the process 

of calculations. For this purpose, we used an analytical software 

package Matlab with Matlab Builder NE toolbox, which al- 

lowed the integration of components developed in Matlab with 

application created for the .Net platform. 

The dataset used in the optimization included nine 5-min 

registrations in a group of six male and three female subjects. 

The study was conducted in stationary conditions. The exam- 

ined subjects were sitting on a chair with a sensor placed on 

the back seat. An ECG recorder was used during the study to 

determine the reference positions of heartbeats. Optimization 

was performed using a population of 64 genomes. A full list of 

variables subjected to optimization with their optimal values is 

presented in Table I. 

Calculations were performed on three Intel Core i7-2600 pro- 

cessor computers with four cores, i.e., eight threads, each. The 

genome chosen for verification was obtained in 701 generation 

after 42 h of computation. 

IV. VERIFICATION 

A verification study was carried out on a group of eight sub- 

jects (six males and two females). Each of the experiments in- 

cluded simultaneous recording of the FBG sensor-based signal 

and ECG signal. The reference positions of heartbeats were de- 

termined from the R waves of ECG. Verification included over 

6000 heartbeats. The total acquisition time was 82 min 47 s. 

Table II shows the root-mean-square error (RMSE) for each 

study separately as well as other performance indexes of the 

algorithm, including root-mean-square (RMS) of relative error. 

The RMSE reached a value of 6.0 bpm corresponding to RMS 

of relative error ratio of 7.4%. 
     Proposed method (black) and compared with the reference HR (gray). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 5. Bland–Altman plot for the obtained HR samples. 

 

Fig. 4 shows an example of a comparison of HR signals ob- 

tained from a recording in subjects #5 and #8, with the reference 

HR signal. Most of the time, the signals being compared over- 

lap; however, in certain moments, the differences occur due to 

faults of the method, which are caused by movement artifacts 

in the source signal. 

The analysis of accuracy of the method was made using the 

Bland–Altman plot shown in Fig. 5, in which the differences be- 

tween gained HR values and the reference signal values are plot- 

ted against their averages. The confidence interval for the error 

of the method is <–12.28 bpm; 11.04 bpm> with a mean error of 

–0.62 bpm. The graph shows no significant correlation of errors 

with the HR; in addition, bias of the method is negligibly small. 

Concentration of points in the lower range of the HR values 

results from greater number of samples obtained in this range. 

 
V. CONCLUSION 

We have reported a method for detecting the HR trace from the 

BCG signal acquired by the MRI-compatible fiber-optic sensor. 
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The detection of heartbeat location in the ballistocardiogram is 

a complex task, mainly due to small levels of the useful wave- 

form amplitude in the source signal in relation to the noise and 

resolution of the measurement system. According to the previ- 

ously reported results, the authors estimate the signal-to-noise 

ratio at 3.37 dB [19]. At the same time, the usable peak-to-peak 

values are approximately 6 pm, whereas the resolution of the in- 

terrogation system is 1 pm. Nevertheless, the proposed method 

for establishing the detection procedure with multiple parame- 

ters subjected to optimization allowed us to achieve satisfactory 

results for the automatic detection of heartbeat positions. 

The method, due to its flexible design, is easy to expand,   

in particular, for the ability to add correctors easily. Currently, 

we are considering supplementing the method with a Bayesian 

classifier corrector, described by Brüser et al. [16]. Future work 

will also include the adaptation of the method to the development 

of a sensor system based on a matrix of FBGs. This feature will 

enable signal acquisition from multiple body locations and thus 

improve the measurement reliability. 
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